Table of Contents

2JavaScript Coding Standards

6Standard Jar Files

6General

9Java Logging Standards

9Logging Implementation

9We will use log4j for logging.

9log4j Configuration

10Declaring a Logger

10Prefix all logging statements with a method name

10Use Guarded Logging

11Use StringBuffers and toString() or toPrint() to ease and improve logging

12Use Delegates or Managers as a logging juncture

12Logging Levels

12TRACE – Use for recording metrics.

13DEBUG – Use to report results to yourself and other developers.

13INFO – Use to report successful events.

14WARN - Designates potentially harmful situations.

14ERROR - Designates error events that might still allow the application to continue running.

14FATAL - Designates very severe error events that will presumably lead the application to abort.

15Java Coding Standards and Practices

JavaScript Coding Standards

1. A JavaScript file (.js) is like a package in Java and related functionality should be organized in one file, or group of files. All JavaScript should be in a .js file, except for a few select pieces. Code for including the .js files, or using the document onload function may be one of the exceptions.

2. Each JavaScript file should not grow too large, to avoid loading functions that are unnecessary in each web page. These is more of a guideline, but try to limit js files to around 1500 lines or less, unless there is a specific need to do otherwise.

3. Each js file should be named in a way that reflects it purpose. In the header of each js file should be a short description of its general purpose, and a list of other dependencies it may have.

4. JavaScript should be coded in an object oriented way, so as to be extensible and reusable in an open source community. Variables should generally be private with Accessors.
Example:
Instead of
var address;
function changeAddress(address) {

window.address = this.address;

}

It should be:

function Person(address) {

this.address = address

this.getAddress = function() {

return address;

};

}

5. Code should attempt to stand alone as much as possible, and not be interwoven with html where it can be avoided. Listeners can be added to html objects via the DOM rather than included in html tags, etc.

6. It's better to have semi-colons in the end of each statement although it's not required. It increases code reliability and readability.

7. Each variable should be declared with a var in front of it for readability, even though it is not required.

8. Variable names should have meaning ie var interestRate vs var inter. Follow java naming guidelines, with new words beginning in upper case, vs underscores. Outer functions that are analogous to Class begin with upper case, and inner functions that are analogous to methods begin with lower case.
function Person(name, address) {
 var name = this.name;
 var address = this.address;
 this.getAddress = function() {
 return address;
 }
}

var myDoctor = new Person(‘Ed’,’2384 Oak St’);

9. No functions or variable names should use any javaScript, CSS, or Html reserved words. Below are some examples:
abstract
else

instanceof
switch

boolean
enum

int

synchronized
break

export

interface
this

byte

extends
long

throw
case

false

native

throws

catch

final

new

transient
char

finally

null

true

class

float

package
try
const

for

private

typeof

continue
function
protected
var
alert

html

form

p

div

onselect
onblur

onload

10. The unit of indentation is four spaces. Use of tabs should be avoided.

11. Avoid lines longer than 80 characters. When a statement will not fit on a single line, it may be necessary to break it. Place the break after an operator, ideally after a comma. A break after an operator decreases the likelihood that a copy-paste error will be masked by semicolon insertion. The next line should be indented 8 spaces.

12. Single line comments should be in the format //, whereas longer comments should be in the format /* */

13. Comments should not exist for the soul purpose of having comments. Comments should be meaningful to explain the purpose of a function, or to describe complex logic that is not easily understood by looking at the code.

14. Parenthesis can be used in mathematical expressions for clarity. Example:
2 * 3 + 4 * 2 would be more clear as (2 * 3) + (4 * 2). Use your discretion on long formulas.
2 * 3 / pi + 4 * 18 * interest * 2 may be nicer as (2 * 3 / pi) + (4 * 18 * interest * 2) but not (((2 * 3) / pi) + (((4 * 18)* interest) * 2)).

15. Functions should not have any spaces before the parenthesis of the parameter list, and the left curly bracket should exist on the same line with the function declaration, with a space. The final bracket should align with the function name.

function doThis(xCoord, yCoord) {
 var point = [xCoord, yCoord];
 return point;
}

16. if statements should have each else statement lining up with the if statement for readability.
if (condition){
 statements
}
else if (condition) {
 statements
}
else {
 statements
}

17. for statements should be in the following format:
for (int i = 0; i < array.length; i++) {
 statements
}

or if working with objects
for (object in arrayList) {
 statements
}

18. A while statement should have the following form:
while(condition) {
 statements
}

19. A do while statement should have the following form:
do {
 statements
}
while (condition);

20. A switch statement should have the following form:
switch (expression) {
 case expression:
 statements
default:
 statements
}

each group of statements should break, return or throw so they do not fall through. (Except for the default).

21. The try catch finally statements should take the following form
try {
 statements
}
catch(variable) {
 statements
}
finally {
 statements
}

22. When checking equality of variables, if you want to specifically check exact equality (or inequality) use three (3) equals instead of 2:
if(null == notdefined) {
 //this is true
}

if null === notdefined) {
 //this is false
}
The same goes for != vs !==.

Standard Jar Files
General

All the jar dependency configurations are listed in this file so that we are consistent across projects for version numbers.

<dependency>

<groupId>commons-attributes</groupId>

<artifactId>commons-attributes-api</artifactId>

<version>2.1</version>

</dependency>

<dependency>

<groupId>commons-attributes</groupId>

<artifactId>commons-attributes-compiler</artifactId>

<version>2.1</version>

</dependency>

<dependency>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

<version>1.2.14</version>

</dependency>

<dependency>

<groupId>javax.faces</groupId>

<artifactId>jsf-api</artifactId>

<version>1.2_04</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>javax.faces</groupId>

<artifactId>jsf-impl</artifactId>

<version>1.2_04</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>javax.servlet</groupId>

<artifactId>jstl</artifactId>

<version>1.2</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>javax.servlet.jsp</groupId>

<artifactId>jsp-api</artifactId>

<version>2.1</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.5</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.apache.activemq</groupId>

<artifactId>activemq-all</artifactId>

<version>5.2.0</version>

</dependency>

<dependency>

<groupId>org.apache.openejb</groupId>

<artifactId>javaee-api</artifactId>

<version>5.0-1</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.apache.xbean</groupId>

<artifactId>xbean-spring</artifactId>

<version>3.5</version>

</dependency>

<dependency>

<groupId>org.apache.xbean</groupId>

<artifactId>xbean-spring-v2</artifactId>

<version>2.8</version>

</dependency>

<dependency>

<groupId>org.mortbay.jetty</groupId>

<artifactId>cometd-jetty</artifactId>

<version>7.0.0.pre5</version>

</dependency>

<dependency>

<groupId>org.cometd.java</groupId>

<artifactId>cometd-api</artifactId>

<version>1.0.beta4</version>

</dependency>

<dependency>

<groupId>org.mortbay.jetty</groupId>

<artifactId>jetty-util</artifactId>

<version>7.0.0.pre5</version>

</dependency>

<dependency>

<groupId>org.mortbay.jetty</groupId>

<artifactId>jetty</artifactId>

<version>7.0.0.pre5</version>

</dependency>

<dependency>

<groupId>org.mortbay.jetty</groupId>

<artifactId>jetty-ssl</artifactId>

<version>7.0.0.pre5</version>

</dependency>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring-beans</artifactId>

<version>2.5.6</version>

</dependency>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring-core</artifactId>

<version>2.5.6</version>

</dependency>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring-context</artifactId>

<version>2.5.6</version>

</dependency>

<dependency>

<groupId>org.springframework</groupId>

<artifactId>spring-jms</artifactId>

<version>2.5.6</version>

</dependency>
Java Logging Standards
Logging Implementation

We will use log4j for logging.
log4j Configuration

We will configure the logging using the XML format. This will allow us to easily change logging configuration without deployment of code. Use the RollingFileAppender. Include the thread name and the class name in the pattern.

Configuration should look something like this:

	<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration debug="false">

 <!-- ============================== -->

 <!-- Append messages to FILE -->

 <!-- ============================== -->

 <appender name="FILE" class="org.apache.log4j.RollingFileAppender">

 <param name="File" value="../log/logfile.log"/>

 <param name="Threshold" value="DEBUG"/>

 <param name="MaxFileSize" value="10MB"/>

 <param name="MaxBackupIndex" value="10"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d {ISO8601} %5p [%t]: %c{1} %m%n"/>
 </layout>

 </appender>

 <root>

 <priority value ="info" />

 <appender-ref ref="FILE"/>
 <!--<appender-ref ref="ASYNC"/>-->

 <!--<appender-ref ref="CONSOLE"/>-->

 <!--<appender-ref ref="SMTP"/>-->

 <!--<appender-ref ref="LF5Appender"/>-->

 </root>

</log4j:configuration>

Example:

public class MyClass {

 public void myMethod() {

 String str = “whatever”;

 log.info(">> myMethod()");

 // My code...

 log.debug(“— myMethod() str=” + str);

 log.info("<< myMethod()");

 }

}

Output in log would be something like:

2010-02-27 15:49:37,459 INFO [T1]: MyClass >> myMethod()

2010-02-27 15:49:37,473 DEBUG [T1]: MyClass -- myMethod() str=whatever

2010-02-27 15:49:37,590 INFO [T1]: MyClass << myMethod()

Following are some standards and guidelines (syntax, etc.) for logging statements. Following these guidelines can help make logging output as consistent as possible across classes.

Declaring a Logger

Declare the logger as the first field (top of code) in the class and declare it as follows:

static Logger log = Logger.getLogger(MyClassName.class.getName());
Prefix all logging statements with a method name

Logging configuration will be set to print class names, so it is then helpful to prefix the statements with the name of the method from which the statement is being executed.

For example:

if(log.isDebugEnabled()){

 log.debug("execute() > Got param: " + param);

}

Use Guarded Logging

"Guarded logging" is a pattern that checks to see if a log statement will result in output before it is executed. Since the logger itself makes this check, it may seem redundant to do this for every call. However, as almost every logging call creates String objects, it is critical. The accumulation of these Strings causes memory fragmentation and unnecessary garbage collection. Garbage collection, while beneficial, also produces significant performance loss. To reduce this as much as possible, always guard logging statements with a severity less than SEVERE. Since SEVERE is always expressed by the logger, these do not need a guard. Here is an example:

if(log.isTraceEnabled()){

 log.trace("This is " + "a best practice " + "example");

}

Use StringBuffers and toString() or toPrint() to ease and improve logging

Sometimes, when you want to print all the values of an object, it is helpful to use a StringBuffer or StringBuilder. In this way, you can assemble all of the data into one clean output statement and avoid cluttering up your log file with redundant data (i.e. multiple lines with several time and level stamps for just one object). The snippet below shows an example of how to do this, but it is still not the best approach.

if(log.isDebugEnabled()){

StringBuffer sb = new StringBuffer();

sb.append("\n label: " + cat.getLabel());

sb.append("\n categoryType: " + cat.getCategoryType());

sb.append("\n attribute: " + cat.getAttribute());

sb.append("\n value: " + cat.getValue());

sb.append("\n Child Cats: " + cat.getCategories().toString());

sb.append("\n links: " + cat.getLinks().toString());

log.debug(">> saveCategory(Category cat, Connection con, boolean closeCon)-> passing this cat: " + sb.toString());

}

In the instances where the contents of a class are being dumped out in a log (as in the example above) consider creating a toString() or to toPrint() method for the class. Notice that the newline character is at the beginning of each property statement that appends to the StringBuffer. Putting the newline character at the end of the line would look like this:

sb.append(" locale: " + this.locale + "\n");

sb.append(" description: " + this.description + "\n");

sb.append(" categoryId: " + this.categoryId + "\n");

In the example above, since the newline must be merged into the String at runtime, the JVM must do unnecessary work. By putting the newline in the beginning of the String instead, no addition operator is needed, thus saving the JVM from having to do that operation. It all adds up!

Now, in any point of the code's execution, it is easy for a developer to inspect the object using just a few statements like this:

if(log.isDebugEnabled()){

log.debug("Submitting this category to delegate.getCategory(invisibleRootCategory):\n" + invisibleRootCategory.toPrint());

}

Use Delegates or Managers as a logging juncture

Typically Delegate or Manager classes act as junction or integration points. And the delegates often have very simple methods that act as proxies to actual implementations in other classes. You can take advantage of this delegate or manager class to act as a place to log the entry and exit of methods at the integration point including the data being passed in and the data returned. Here is an example of a simple method in a delegate class that logs entry, exit, and the data going in, and the data coming out:

public List getUserLinks(String OwnerAttribute , String OwnerValue, boolean anonymousView) throws Exception {

if(log.isDebugEnabled()){

StringBuffer sb = new StringBuffer();

sb.append("\n>> getUserLinks(OwnerAttribute,OwnerValue,anonymousView)");

sb.append("\nOwnerAttribute: " + OwnerAttribute);

sb.append("\nOwnerValue: " + OwnerValue);

sb.append("\nanonymousView: " + anonymousView);

log.debug(sb.toString());

}

List userLinks = elinksDAO.getUserLinks(OwnerAttribute, OwnerValue, anonymousView);

if(log.isDebugEnabled()){

log.debug("<< getUserLinks() <- returning: List userLinks:\n" + userLinks.toString());

}

return userLinks;

}

The key here is that we have standardized on WHERE to do the primary logging so it is consistent. In this way, we don't have a random mix of primary logging code in the delegate and in the implementation classes.

Logging Levels

Loggers may be assigned levels. The set of possible levels are: TRACE, DEBUG, INFO, WARN, ERROR and FATAL
TRACE – Use for recording metrics.
	Likely only to be turned on during performance testing, or in production when trying to find out what part of the site is slow or consuming recources. Example:

public void myLongRunningProcess() {

 log.trace(“Start of process “ + new Date());

 //my long running process

 log.trace(“End of process “ + new Date());

}

 DEBUG – Use to report results to yourself and other developers.

	The DEBUG Level designates fine-grained informational events that are most useful to debug an application. Use to report intermediate values, parameter values, branching flow, etc. Example:

public double calcNetPrice (double listPrice, double taxPct, double discountPct) {

 double tax;

 double discount;

 discount = (listPrice * discountPct);

 tax = ((listPrice – discount) + taxPct);

 If (log.isDebugEnabled()) {
 log.debug("list price: " + listPrice);
 log.debug(“discount: “ + discount);

 log.debug(“tax: ” + tax);
 }
 …
}

INFO – Use to report successful events.

	The INFO level designates informational messages that highlight the progress of the application at coarse-grained level.

Info-level logging could be used for tracking the flow of execution through a program and for flagging particular positions in a program (i.e. to ensure they have been reached). Only track key aspects of the flow when it is time to pass the code onto other developers. This can also be used in a support incident. An overabundance of INFO statements (especially in simple getter and setter methods) can hinder others rather than help them.
Recording Successful Events

i.e. “user XYZ logged in “ or “Balance for account ABC retrieved successfully”
Entering and Exiting a Method
· Logging the entrance and exit to a method could be done with the level: INFO
· Use the abbreviated symbols for 'entering' ('>>') and exiting (‘<<’) followed by the method name. Use a parenthesis to help clarify that the item is a method. Example:

public void myMethod() {

 if (log.isInfoEnabled()) {

 log.info(">> myMethod()");

 }

 // My code...

 If (log.isInfoEnabled()) {
 log.info("<< myMethod()");

 }

}

WARN - Designates potentially harmful situations.
	Use this for recoverable errors. This to put an entry in the log that essentially says, "Hey, something happened here you might want to know about. I can continue, but it may be an indication of something abnormal going on."

 ERROR - Designates error events that might still allow the application to continue running.
	Use this for exceptions and other non-recoverable errors in the code. These are not situations that would render the application inoperable, but a list of ERROR events should be reviewed on a daily basis. Recurring errors should be investigated promptly.

 FATAL - Designates very severe error events that will presumably lead the application to abort.
	Use this for critical problems that would reduce the functionality of the website. For example, the database is unavailable, or there is no communication with the back-end or something of the sort. This level of logs should probably trigger some sort of immediate notification.

Java Coding Standards and Practices

Java code written for the ActionCenter project will follow the standards proscribed in the “Java

Code Conventions” document copyright1997, Sun Microsystems, Inc. (http://java.sun.com/docs/codeconv/) with the following exceptions and additions.

Exceptions
4.1
With the proliferation of widescreen and larger monitors, the maximum line length is 120 characters rather than 80.

Additions

1. Javadoc Comments

a. Package Html

i. Create a package.html for each package. This contains the package description.

b. Method Javadoc

i. Each method in a class should be preceded by a javadoc comment including at minimum the @param and @return tags and a brief description of the purpose of the method, and how it is different from the overloaded or overridden class.

c. Type or Class Javadoc

i. Include the following copyright statement in the class level javadoc comment: <insert copyright text here>
2. Naming Conventions

a. Package Names

i. Package names should begin with “org.actioncenters”.

3. Size Guidelines

a. Maximum File Length – 2000 lines

b. Maximum Line Length – 120 characters.

4. Comments

a. Any algorithms used in a method should be explained in a block comment.

5. Collections

a. Avoid the usage of fixed-sized arrays object. Instead use extendable collections such as List or Set. <verify this one as v.1.6 has added copyOf and copyOfRange that can efficiently resize, truncate, or copy subarrays for arrays of all types.

b. When declaring a collection, always use the interface of the collection, i.e. List, Map, Set instead of the implementation specific class.

c. When possible, initialize ArrayList to the expected size when instantiating. i.e. new ArrayList(200). This will prevent expensive resizing and copying (which is done automatically) when the max size has been reached.

6. Java 1.5 Features

a. Use for-each loop to iterate over a collection.
b. Use enumerated types instead of "final static int" constants for enumerated values.
c. Use generics to specify the type of a collection at compile time.
